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Fine-Scale Mapping of Disease Genes with Multiple Mutations via Spatial
Clustering Techniques
John Molitor, Paul Marjoram, and Duncan Thomas
Department of Preventive Medicine, University of Southern California, Los Angeles, Los Angeles

We present a method to perform fine mapping by placing haplotypes into clusters on the basis of risk. Each cluster
has a haplotype “center.” Cluster allocation is defined according to haplotype centers, with each haplotype assigned
to the cluster with the “closest” center. The closeness of two haplotypes is determined by a similarity metric that
measures the length of the shared segment around the location of a putative functional mutation for the particular
cluster. Our method allows for missing marker information but still estimates the risks of complete haplotypes
without resorting to a one-marker-at-a-time analysis. The dimensionality issues that can occur in haplotype analyses
are removed by sampling over the haplotype space, allowing for estimation of haplotype risks without explicitly
assigning a parameter to each haplotype to be estimated. In this way, we are able to handle haplotypes of arbitrary
size. Furthermore, our clustering approach has the potential to allow us to detect the presence of multiple functional
mutations.

Introduction

Many haplotype analysis methods employ the concept
of “linkage disequilibrium” (LD), which refers to the
tendency for alleles at closely linked loci to be associated
with each other across unrelated individuals in a pop-
ulation. Using LD, one can localize a disease-causing
variant along a chromosome by detecting patterns of
marker values that exist at a putative location at a higher
frequency among diseased individuals than among
healthy individuals. By examining haplotypes consisting
of multiple markers, we are able to exploit the inter-
dependence of alleles at different markers without hav-
ing to model explicitly all facets of allele interaction.

Haplotypes associated with disease are expected to
look similar to one another around the location of the
disease-causing mutation; if the functional mutation has
occurred only once, they share a common ancestry at
that point. Consequently, the disease haplotype may
contain patterns of alleles that are inconsistent with the
allele frequencies of haplotypes not associated with dis-
ease. Throughout the present article, we make use of
the concept that haplotypes that are similar to each
other around the region surrounding a causal mutation
are likely to have similar risks. Thomas et al. (2001)
and Molitor et al. (2003) accomplished this by using a
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Bayesian spatial smoothing approach known as the
“conditional autoregressive” (CAR) model. Here, we
place haplotypes into clusters on the basis of haplotype
similarity. Each cluster will be determined by a “center”
corresponding to a prototypical haplotype, which can
be seen as analogous to the ancestral haplotype from
which the other haplotypes in the cluster are derived.
Each cluster will also have an associated risk. The iden-
tity of the centers will define the way that haplotypes
are allocated to their respective clusters. Given a set of
haplotype centers, any observed haplotype will be
placed into the cluster corresponding to the “closest”
center. We therefore define a similarity metric that al-
lows us to measure the closeness of one haplotype to
another, and we employ a model incorporating clusters
of varying risk.

The idea of assigning population units to clusters on
the basis of proximity to centers is a rather old one,
originally attributed to Voronoi (1908). This approach
has been used in an enormous number of applications
in the scientific literature (see, e.g., Okabe et al. 1992).
Particularly relevant to our situation are recent appli-
cations to spatial mapping of disease rates for small
areas (see Knorr-Held and Rasser 2000 and Denison
and Holmes 2001). We develop these concepts in a way
that allows us to estimate haplotype risk and thereby
to fine map the location of the casual mutation(s) for
a disease.

Material and Methods

Diploid data consist of I individuals with phenotypes
and haplotypes , wherey , i p 1, … ,I h , j p 1,2 h �i ij ij
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with H denoting the number of unique hap-{1, … ,H}
lotypes. If the phenotypes are continuous, we use the
model

2

y p g � e ,�i c ihij
jp1

where , with representing the clusterc � {1, … ,C} ch hij ij

to which haplotype belongs and with C representinghij

the total number of clusters. If the phenotype is binary,
we use the model

2

Probit[Pr (y p 1)] p g . (1)�i chij
jp1

Covariates can be added in the usual manner. Equation
(1) assumes an additive model for the joint effect of the
two haplotypes on a probit scale for a binary disease
trait (corresponding approximately to a multiplicative
model on an odds ratio scale, since the probit and logit
links are very similar [Cox 1970]). This is done to focus
the analysis on the effects of haplotype risks, but the
model is easily generalized to allow for dominance if the
focus is instead on genotype risks. For a dominant
model, for example, one might choose instead

.Probit[Pr (y p 1)] p max {g ,g }i h hc ch hi1 i2

We model the risk for haplotype cluster c as g ∼c

. Informative priors can be placed on a and2N(a,j )g

; however, for all analysis performed in the present2jg

study, we fix and . This has the effect of2a p 0 j p 1g

placing an uninformative prior on the probit probabil-
ities of , which we feel is ap-p p Pr (y p 1) ∼ Unif(0,1)i i

propriate for case-control data. For data in which we
have just one haplotype per phenotype, as in the data
sets used for illustration in the present article, we include
only a single term in the summation. Therefore, we re-
write model (1) as

Probit[Pr (y p 1)] p g , (2)i chi

where . Equation (2) should be thought ofg ∼ N(0,1)chi

as a model for the probability that each haplotype car-
ries a disease-susceptibility allele.

Voronoi Tessellation Structure

We cluster haplotype risks by first stochastically as-
signing a “center” (i.e., a haplotype), , to eacht � Tc

cluster c, where denotes the current con-T p (t , … ,t )1 C

figuration of C centers. The centers may be thought of
as the ancestral haplotypes from which the members of
each cluster are derived. Cluster center haplotypes are
free to take unobserved values. For data in which the
number of markers is very large, we suggest restricting
centers to the space of observed haplotypes, to improve

mixing. We have implemented such an algorithm, and
results are very similar to the version of the algorithm
we use for all analyses in this paper, in which centers
can be unobserved haplotypes (authors’ unpublished
data).

Having assigned a center haplotype to each cluster,
we then deterministically assign each sample haplotype
to the cluster with the closest center, where distance is
determined by a similarity metric (see below). If a hap-
lotype is equidistant from several centers, it is assigned
to the center that appears first in the list of centers, as
was done by Knorr-Held and Rasser (2000). To assist
efficient mixing, the algorithm also includes a transition
that shuffles the order in which the clusters are listed.

A haplotype region, , is defined asRc

′R p {h � H: k h � t k!k h � t k Gc ( c} , (3)′c c c

where indicates “distance” in some metric space,k … k
as discussed below. Here denotes the set of uniqueH

haplotypes in the data set. Thus, contains the set ofRc

observed haplotypes that are more similar to the hap-
lotype at the center of cluster c than to any other cluster
center. This partition structure is known as a “Voronoi
tessellation” (Voronoi 1908) and represents the basic
mechanism that we use to place haplotypes into clusters.
We explore the space of possible centers, using standard
Metropolis-Hastings techniques (Metropolis et al. 1953;
Hastings 1970).

Similarity Metric and Gene Mapping

The effectiveness of our methodology depends upon
the manner in which we determine the closeness of a
sample haplotype to a particular center haplotype. We
express closeness in terms of similarity (which can be
thought of as inversely proportional to distance), so that
the region defined in equation (3) is the set of allRc

haplotypes h that are more similar to than to any othertc

center. If we allow our similarity metric to depend upon
the location of the putative functional mutation forxc

cluster c, we can use our methodology to perform gene
mapping. For convenience, we restrict the to be atxc

observed marker locations. We use the same similarity
metric as has been reported elsewhere (Molitor et al.
2003), a metric in which CAR models are used to eval-
uate haplotype risks. We express the similarity be-whtc

tween a haplotype h and a particular center as thetc

shared length identical by state (IBS) between the two
haplotypes at . Specifically, we let be the locationx mc r

of the first marker to the right of at which haplotypexc

h and cluster center haplotype are not identical. Fur-tc

thermore, let denote the location of the marker im-′mr
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mediately to the left of (i.e., the last marker at whichmr

h and are identical). We definetc

′m � mr rR (x ) p .ht cc 2

We let be the location of a similarly defined pointL (x )ht cc

to the left of . Thus, we can write the similarity asxc

w p R (x ) � L (x ) . (4)ht ht c ht cc c c

The similarity metric (4) can be extended in many
ways. Rather than including only the region correspond-
ing to the first difference on either side of , Molitor etxc

al. (2003) suggest a similarity metric with which one
could also include regions beyond that marker. The met-
ric is based upon the assertion that the difference was
due to a mutation at the single marker locus and that
the two haplotypes in question are indeed identical by
descent even beyond the point of dissimilarity. In this
case, one could continue to include length after a dif-
ference is encountered but assess a penalty to the shared
length after such a difference. Another modification
would be to define a series of probabilities at each
marker location and to use these probabilitiesp , … ,p1 L

to weight the “shared length” between markers. These
probabilities might represent variation in recombination
rate and would most likely be assessed by independent
methods (although they could, in principle, be included
in the state space and thus be estimated as part of the
analysis). Thus, we might capture nonlinear patterns of
linkage disequilibrium as our observations move away
from the causal mutation. These probabilities could also
be used as a setup for a higher level logistic or probit
regression, allowing for covariates to be introduced at
this stage.

Bayesian Markov Chain–Monte Carlo (MCMC)
Estimation Methods

We use Gibbs sampling to obtain model parameter
estimates (see, e.g., Gilks et al. 1996). This requires der-
ivations of the full conditional distributions for each
parameter—namely, the conditional distribution of each
parameter, given the current estimates of all other pa-
rameters in the model. Many of the parameter updates
are standard, but a few are not. We give an overview of
some of the nonstandard aspects of the sampler in this
section, leaving the details for appendix A.

To allow the full conditional distributions to follow
standard forms, we use the convention (described by
Albert and Chib [1993]) of transforming equation (2)

into a normal model by introducing a latent variable
. Equation (2) then becomes∗y ∼ N(g ,1)i chi

∗y p g � e , (5)i c ihi

where . In each cycle of the Gibbs sampler, wee ∼ N(0,1)
generate each , given all other parameters of the model,∗yi

by simulating a normal random variable with mean
. If , we further condition that , whereas,∗g y p 1 y 1 0c i ihij

if , we condition that . In our context,∗ ∗y p 0 y ! 0 yi i i

can be interpreted as a true underlying continuous phe-
notype, represented by a categorical or 1, whichy p 0i

serves as an imprecise indicator. Once the model has
been converted to the form of equation (5), standard
MCMC moves can be employed for most parameters.

To allow the number of clusters to be random instead
of arbitrarily fixed ahead of time, we employ reversible
jump methods (Green 1995). Instead of using the con-
ventions common in the literature (see, e.g., Richardson
and Green 1997), we employ a simpler method proposed
by Denison and Holmes (2001)—a method in which,
whenever the number of clusters changes, we integrate
out the values of in equation (5). We define ∗g y pc

and , and we again let denote∗ ∗(y , … ,y ) g p (g , … ,g ) Hi I 1 C

the space of unique haplotypes in the data set and T

denote the current set of haplotype centers. We now
introduce the formula

� �

∗ ∗f(y FT,H) p … f(y Fg,T,H)f(g)d … d . (6)� � g g1 C
�� ��

When one proposes the addition of a new cluster, one
would normally have to propose a new cluster risk gc

as well. However, following Denison and Holmes
(2001), we propose a new cluster based on construction
of likelihoods obtained after integrating out the values
of g. At the end of each cycle of the Gibbs sampler, we
then generate the current set of values for g, using the
full conditional distribution of each based on the non-gc

integrated likelihood, derived from equation (5). This
approach is detailed and is used extensively by Denison
et al. (2002). Once these parameters are updated, the
values of are updated as described above. The joint∗yi

distribution of all parameters corresponding to the
model formulation is

∗f(y Fy,g,c )f(gFC)f(c FC,T,H,x)f(T)f(x).h h

We have found that our sampler seems to mix well
and to give posterior distributions that are robust to
differing choices of prior for the data sets we have
analyzed.
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Dimensionality Issues Regarding Ambiguous
Haplotypes

One appealing feature of this method is that, without
changing the dimension of the parameter space, we can
impute haplotypes for individuals who do not have com-
plete haplotype information. Missing information can
occur when there are missing values at some markers or
when only genotype information is available. Our model
does not require a risk parameter for every possible im-
puted haplotype. Instead, at each cycle of the Gibbs sam-
pler, the current risk estimate for haplotype h is consid-
ered to be . Thus, for example, one can construct agch

posterior distribution for the risk associated with a par-
ticular haplotype of interest. To do this, at each iteration,
one simply outputs the risk parameter of the cluster to
which that haplotype is assigned.

Missing information at a marker is dealt with by first
selecting an incomplete haplotype and then randomly
selecting one of the missing markers for imputation. We
then alter the currently imputed value at the selected
missing marker location to create a new haplotype that
serves as our proposal haplotype. Once our proposal
has been selected, we reallocate the haplotype to the
cluster with the closest center and accept with a prob-
ability calculated in accordance to the Metropolis-Has-
tings ratio (eq. [A1]). Note that, although we must deal
with individual markers in constructing our haplotype
proposal, we only propose complete haplotypes in our
Metropolis-Hasting ratio, thus keeping our analysis hap-
lotype-based and never modeling markers and their as-
sociated intermarker interactions individually. Further-
more, since we do not assign a risk parameter for every
possible imputed haplotype but instead infer haplotype
risk indirectly, we can perform analyses in situations in
which the haplotype parameter space is extremely large.

Results

In this section, we give results for analyses of real and
simulated data. We used a prior for the valuesN(0,1)
of g and vague, “flat” priors for all other parameters.
For all data sets, the sampler was run for up to 100,000
iterations for burn-in, followed by up to 5,000,000 it-
erations that were saved for analysis. Here we set the
range of possible numbers of clusters to .1 � C � 25

Choice of summary statistics to report from such
analyses is not straightforward. A natural choice is to
define as the location of the functional mutationmaxxc

corresponding to the cluster to which most disease hap-
lotypes are allocated at any given iteration. However,
for data in which there are multiple functional muta-
tions we often find that the posterior for containsmaxxc

a single mode associated with only the most frequent
of the two functional mutations. Consequently, we de-

fine a new parameter, h, which weighs the probability
of a location according to risk and the number of dis-
eased individuals associated with the location. If we
assume model (2), this new parameter, h, takes on
marker values, , with and has probabilityS l p 1, … ,Ll

distribution function (pdf)

Pr (h p S ) ∝ Pr (y p 1Fg )I(x p S ) ,�l i c c lh hi i
i:y p1i

where denotes an indicator function. Since we areI(7)
using a probit link, we let denote a standard normalF(7)
cumulative distribution function (cdf) and we have

Pr (y p 1Fg ) p F(g ) .i c ch hi i

Furthermore, even in the absence of phenotypes, the
pattern of markers present in any given data set will
result in a “null” distribution that is likely to be non-
uniform for statistics of interest. For example, observed
shared lengths are likely to be larger a priori in regions
in which markers are less dense. To allow for this, we
construct three posterior distributions when analyzing
a given data set. First, we compute a null distribution
for h by analyzing the data without phenotype infor-
mation. (In particular, we remove the phenotype infor-
mation and allow the algorithm to impute phenotypes
in a manner analogous to that with which it imputes
missing markers.) Second, we construct the posterior
distribution for h by analyzing the data complete with
phenotype information. Finally, we construct a histo-
gram of “Bayes factors” (Kass and Raftery 1995) for
h, computed by taking the ratio of posterior and null
distributions at each possible h value.

Simulated Data Sets

We assess the performance of our model by using sim-
ulated haploid data. These simulations represent “proof
of principle” results rather than realistic simulations of
actual data sets. We simulated using a coalescent model.
The coalescent was introduced by Kingman (1982) and
was generalized to include recombination by Hudson
(1983). Griffiths and Marjoram (1997) formalized the
latter as the Ancestral Recombination Graph, which
provides the formal framework for the genealogy of sam-
ples under recombination. Accessible reviews of the co-
alescent can be found in the work of Hudson (1991),
Tavaré (1984), and Nordborg (2001). As is common in
the literature, we begin by assuming a single functional
mutation. We then extend this to a scenario in which
there are two functional mutations. We simulate hap-
lotypes from a single, unstructured population of fixed
size, in which there is no selection acting on the region
of interest. The ARG is driven by two compound pa-
rameters and , where N is the (effec-n p 4Nu r p 4Nr
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tive) haploid population size, u is the mutation proba-
bility per haplotype per generation, and r is the
recombination probability per haplotype per generation
(see Hudson [1991]). The computational issues involved
with simulating data with high population sizes (as in
our case-control simulations) combined with high re-
combination rates are particularly nontrivial. This is fur-
ther complicated by the fact that we generate data via
a rejection method that itself has low acceptance rates.
Thus, because of computational limitations, we restrict
ourselves to simulations with , correspond-r p h p 50
ing to a region on the order of 50 kb (Nordborg and
Tavaré 2002) and a population size of 5,000 (in the case-
control simulations).

A Single Functional Mutation.—We begin by simulat-
ing data for which there is a single functional mutation.
For the sake of simplicity, we assume a binary disease
phenotype and haploid individuals. Let n denote the size
of the sample we wish to generate and let denoted � n
the number of diseased haploids in that sample. Assume
that phenotypes are the result of a single mutation that
has occurred only once and is located at x. If we assume
full penetrance, the presence of d diseased haploids en-
forces a restriction on the space of possible genealogies
underlying the data at x: the d haploids carrying the
mutation must share a common ancestor among them-
selves before sharing a common ancestor with any of
the other haplotypes. Griffiths and Tavaré (1998) and
Wiuf and Donnelly (1999) provide a formal framework
for this intuition in settings in which there is no recom-
bination. However, although this constraint is enforced
at x, in the presence of recombination, it will break down
as we move along the haplotype away from x. Conse-
quently, we choose to generate data using a rejection
algorithm. (See, e.g., Tavaré et al. [1997] and Weiss and
von Haeseler [1998] for related applications of rejection
methods in a population-genetics context.) To generate
samples with disease frequency close to , we pro-f p d/n
ceed as follows:

1. Generate the ARG for a sample of n haplotypes.
2. Assign a type to the most recent common ancestor

of the graph and add mutations to the rest of the graph
according to a Poisson process of rate .n/2

3. Choose a mutation, m, uniformly at random from
those present in the sample. m is our putative disease
mutation.

4. Calculate the frequency of disease haplotypes in the
sample, , using an appropriate penetrance func-′ ′f p d /n
tion p (where p is assumed to depend only on the type
at m).

5. If for some value of e, output this sam-′d f � f d ! e

ple, along with the generated phenotypes, with m labeled
as the disease mutation.

6. Return to 1.

This procedure produces a set of samples along with
associated phenotypes, conditioned on there being a dis-
ease phenotype of frequency close to f, the degree of
closeness depending upon choice of e (which also effects
the efficiency of the algorithm). The method generalizes
in a natural way to include more-complex penetrance
functions and, as we indicate in the next section, more
than one functional mutation.

We denote the region by the unit interval [0,1] and
indicate, in figures 1–5, the true location of the func-
tional mutation with a dashed, vertical line. In all anal-
yses in this and subsequent sections, we remove the func-
tional mutation(s) from the data before analysis. For all
simulated data, we present the histogram of Bayes fac-
tors for h. In most of the figures, the Bayes factors are
cut off at 25, so that one extremely large value cannot
dominate the graph, making it impossible to see other
peaks. Figure 1 shows results for 20 such analyses with

and .f p 0.25 n p 200
Two Functional Mutations.—To produce samples in

which there are two functional mutations we use the
procedure given above, with , but we replacen p 200
step 3 with “Sample two mutations, uniformly at ran-
dom from those on the graph.” We now use a penetrance
function that depends upon both of the chosen muta-
tions and accept data sets for which the disease has the
target frequency. The overall disease frequency is as-
sumed to be . To ensure that it is reasonable tof p 0.25
hope to find a signal associated with both mutations,
we further condition on the frequencies of the two mu-
tations chosen. To be specific, we reject the data set
unless both mutations have frequency 10.1.

In figure 2, we present representative results from the
analysis of 20 such data sets. Haplotypes that carry at
least one of the functional mutations are labeled as dis-
eased, with probability 0.5. All haplotypes with neither
functional mutation are nondiseased.

We stress that these examples are designed to be il-
lustrative of the concepts involved rather than realistic.
In an attempt to consider a slightly more realistic sce-
nario we now simulate data that can be thought of as
a loose approximation to that which results from a case-
control study. In particular, we generate data for a pop-
ulation of size using the preceding algorithm.n p 5,000
We then randomly subsample 100 cases and 100 con-
trols. These 200 haplotypes are then analyzed using our
approach. We show two scenarios. In figure 3, we pre-
sent representative results for a scenario in which there
is a single functional mutation, located close to 0.5 and
with 50% penetrance, leading to a disease with a pop-
ulation frequency of 5%-10%. In figure 4, we show
results for a scenario in which there are two functional
mutations, in which haplotypes are diseased if they carry



Figure 1 Histogram of Bayes factors for h as a function of mutation location in 20 simulated data sets, with one functional mutation of
full penetrance and no phenocopies. Dashed vertical lines indicate “true” locations of disease-causing variants. Bayes factors 125 are truncated.
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Figure 2 Histogram of Bayes factors for h as a function of mutation location in 20 simulated data sets, with two functional mutations
and no phenocopies. Haplotypes are diseased with probability 0.5 if and only if they carry either of the functional mutations, 0 otherwise.
Dashed, vertical lines indicate “true” locations of disease-causing variants. Bayes factors 125 are truncated.
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Figure 3 Histogram of Bayes factors for h for in 8 simulated case-control data sets, with one functional mutation of 50% penetrance
and no phenocopies. Dashed, vertical lines indicate “true” locations of disease-causing variants. Bayes factors 125 are truncated.



Figure 4 Histogram of Bayes factors for h for in 8 simulated case-control data sets, with two functional mutations and no phenocopies.
Haplotypes are diseased with probability 1 if and only if they contain either functional mutation. Dashed, vertical lines indicate “true” locations
of disease causing variants. Bayes factors greater than 25 are truncated.
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either functional mutation and for which the disease
frequency is ∼20%. The algorithm performs slightly less
well in these scenarios, affected by both the case-control
subsampling and the lower frequency of disease. As dis-
ease frequency is reduced, disease haplotypes tend to
become more similar, and our ability to fine map over
the short distances simulated here is lessened.

Cystic Fibrosis Data

This well-known data set first appeared in Kerem et
al. (1989) and was recently explored in Liu et al. (2001)
and Molitor et al. (2003). The data set contains 92 con-
trol and 94 disease haplotypes with each haplotype con-
sisting of 23 RFLP markers. If we arbitrarily set the
location of the first marker to be 0, the marker locations
range from 0.0 to 1.7298 cM. It is known that one
founder mutation, , falls between markers 17 andDF508

18 and is located ∼0.88 cM away from the leftmost
marker. This mutation accounts for ∼67% of disease
chromosomes. This data set contains missing data, so
we must impute the values at the missing markers in the
manner previously described.

The posterior distributions related to h are displayed
in figure 5. The posterior mode for the Bayes factor
distribution was at 0.8698, for which the Bayes factor
was 8.25. Histograms depicting the number of clusters
that were utilized throughout the course of the MCMC
simulation procedure are depicted in figure 6. Since we
are clustering haplotypes associated with both healthy
and disease haploids, we expect that the number of clus-
ters selected will be more than they would if we were
examining only haplotypes associated with disease. The
posterior mode for the number of clusters chosen is 12
for the whole data set, whereas the posterior mode for
the number of clusters associated with positive risk is
only 5. Many authors have analyzed this data set
(McPeek and Strahs 1999; Morris et al. 2000; Morris
et al. 2002; Liu et al. 2001; Molitor et al. 2003), ob-
taining point estimates between 0.8 and 0.95.

Figure 7 displays posterior mean risks (in terms of
) for each haplotype in the cystic fi-Pr (y p 1) p F(g )i ci

brosis sample. As a by-product of our methodology, we
can construct a measure of genetic heterogeneity be-
tween haplotypes. To do this, we construct an estimate
of similarity between a pair of haplotypes by recording
the number of times the sampler places the two haplo-
types into the same cluster. We then apply agglomerative
hierarchical clustering to construct a dendrogram of
haplotypes shown in figure 7. Most of the haplotypes
known to contain the mutation are clustered to-DF508

gether in the leftmost clade, along with eight non-
case haplotypes. A somewhat similar situation wasDF508

encountered by Morris et al. (2002), who also performed
hierarchical clustering and found a small number of non-

contained in a large cluster of haplotypes contain-DF508

ing the mutation and suggested that mutationsDF508

borne by these non- haplotypes have occurred onDF508

a background marker haplotype similar to that for the
.DF508

Data for Friedrich Ataxia

Thus far, we have assumed that we have biallelic (e.g.,
SNP) data. Although SNP data are easy to obtain, more
power might be gained by also including loci at which
multiple alleles are present (for example, microsatellite
loci). Our method generalizes naturally to include such
a scenario. We enlarge the state space to explore the
space of observed alleles at each (non-SNP) locus. Fur-
thermore, we consider markers to be IBS at a given
marker if and only if they have the same allele at that
location. In the longer term, one might develop a more
sophisticated similarity measure to better exploit the na-
ture of such data, but it is of some interest to see how
well our existing methodology embraces data of this
more complex sort.

To illustrate this, we consider a Friedrich ataxia data
set analyzed by Liu et al. (2001). The data consists of
58 disease haplotypes and 69 control haplotypes; we
omitted a pair of unphased disease chromosomes. There
are 12 microsatellite markers, covering a region of 15
cM. For details, see Liu et al. (2001). Results are given
in figure 8. Our method preferred marker 3—located at
0.095, with a Bayes factor of 2.95—followed by marker
4, located at 0.09625 with a Bayes factor of 2.14; the
true location was (0.0975, 0.0988). We note that the
Bayes factors are considerably lower than for the cystic
fibrosis data.

Discussion

We have introduced a methodology for mapping based
on ideas drawn from spatial statistics. We have illus-
trated this with analyses of both real and simulated data.
We believe our methodology appears sufficiently prom-
ising to warrant further development. Also, the sampler
runs quite quickly, as our C�� implementation takes
∼2.5 seconds per 1,000 iterations when analyzing the
cystic fibrosis data on a 2.66 GHz Intel Xeon computer
running Red Hat Linux 9.0. The program can be ob-
tained by e-mail from J.M. (jmolitor@usc.edu). We now
indicate some of the limitations of our approach and
discuss obvious generalizations and other issues.

We have discussed data for which we have a binary
phenotype. However, our model is, in essence, a con-
tinuous model, which we adapt for binary data by in-
cluding a probit step. Thus, our methodology will deal
with a continuous phenotype (by omitting the probit
step). More significantly, we assume haploid individu-



Figure 5 Histograms from the analysis of the cystic fibrosis data. a, Null for h as a function of mutation location. b, Posterior for h. c,
Bayes factors for h. Dashed, vertical line indicates approximate location of mutation.DF508
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Figure 6 Histograms from the analysis of the cystic fibrosis data. Posterior distribution for (a) the total number of clusters and (b) the
number of clusters associated with positive values of .gc

als. Diploid data with known haplotypes fits within our
framework via the inclusion of both haplotypes and, if
desired, interaction terms for pairs of clusters. However,
if we have genotype data and haplotypes are unknown,
a more substantial adaptation is required. Essentially,
we propose the addition of a further layer to the model
in which genotypes are assigned to haplotypes before
these haplotypes are then assigned to their ancestral
clusters. This layer will be explored as part of the same
MCMC model, thus integrating the analysis of the hap-
lotypes with the assignment of genotypes to haplotypes.
We propose to develop these ideas, including more com-
plex situations such as pedigree-based analyses, in a
subsequent paper.

We currently assign haplotypes to centers in a con-
ditionally deterministic fashion. In other words, if one

knows the centers and the similarity metric parameters,
then one can assign haplotypes to clusters with certainty.
Over the course of iterations, the centers and the values
of change, so a probabilistic distribution of clusterxc

assignments for each haplotype is effectively generated.
However, it might be desirable to make probabilistic
assignments at each iteration. If the similarity between
haplotype h and a certain cluster center is , then′c w ′h,c

the haplotype could be assigned to cluster with′c
probability

′wwh,ce′Pr (c p c ) p ,Ch
′′wwh,c� e

′′c p1



Figure 7 Dendrogram reflecting genetic heterogeneity of cystic fibrosis haplotypes. a, Hierarchical agglomerative clustering of haplotypes,
based on a similarity measure defined by the number of times each pair of haplotypes was assigned to the same cluster. b, Posterior mean
estimates of (where denotes a standard normal cdf) for haplotype h, arranged in the sequence given in panel a. ThePr (y p 1) p F(g ) F(7)i ci

darkest bars indicate haplotypes known to contain the mutation, the lighter bars indicate case haplotypes, and the lightest bars indicateDF508

control haplotypes.

where w is a smoothing parameter to be estimated. As
w increases, the chance that we will choose the cluster
with the most similar center increases. Note that, if

, cluster allocation is uniformly random, com-w p 0

pletely ignoring the similarity, and, as , each hap-w r �
lotype is assigned with certainty to the most similar
center, bringing us back to our original Voronoi-based
method. This probabilistic approach is close in spirit to
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Figure 8 Histograms of Bayes factors for values of h as a function of mutation location for Friedrich ataxia data. Dashed vertical lines
indicate markers that flank the true value of mutation location.

the commonly used Potts model (see Green and Rich-
ardson 2002).

Like our proposed approach, the method of Molitor
et al. (2003) used techniques based in spatial analysis.
They used CAR techniques (Cressie 1993) that include
just one parameter for the location of a disease-causing
mutation and therefore had limited ability to detect mul-
tiple disease mutations. Also, the CAR approach re-
quires a risk parameter for each haplotype and therefore
does not scale well when there is a large number of
haplotypes. This is especially true when there are miss-
ing marker values, as one needs a separate risk param-
eter not only for every observed haplotype but also for
every haplotype that can arise as a result of missing

value imputation. One of the strengths of our method
is the way it places haplotypes into clusters, thereby
potentially allowing for detection of multiple disease-
causing variants. The clustering approach is close in
spirit to the coalescent, allowing our clusters to be in-
terpreted as the set of descendants of common ancestral
haplotypes.
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Appendix A

MCMC Algorithm

Reversible Jump MCMC

We make the prior assumption that all haplotype center configurations are equally likely and that the number
of clusters C is constrained to lie within . By using an uninformative prior structure on the number of[C ,C ]min max

centers and by proposing and deleting centers with equal probability, we effectively cancel out our center proposal
and prior distributions when Metropolis-Hastings updates are made (see Denison et al. 2002, p. 53). Using equation
(6), we can propose a new cluster (Birth Move) by proposing a new center and labeling the set of center values
with the new addition as while the current set is denoted as . We then use the following Metropolis-new oldT T

Hastings ratio to decide whether to accept the proposal:

∗ newf(y FT ,H)
R p min 1, . (A1)( )∗ oldf(y FT ,H)

We propose a new center by randomly generating a new haplotype. Note that, since we are dealing with a discrete
set of centers instead of continuous variables, no Jacobian term is required in equation (A1). Cluster deletions are
accomplished by randomly selecting one of the existing clusters and removing it. We also propose new states in
which one of the existing clusters is chosen at random and its center haplotype is changed to a new type. Whenever
we propose a new center configuration , a new set of allocations of haplotypes to clusters must be determin-newT

istically calculated.

Updates That Do Not Affect Cluster Allocation

The updates of and do not have a direct impact on how haplotypes are allocated to clusters. Each parameter∗y gi c

is updated from its full conditional distribution according to equation (5), using standard normal theory (see, e.g.,
Carlin and Louis 2000).

Updates Affecting Cluster Allocation

The following parameter proposals have a direct impact on how haplotypes are allocated to clusters and therefore
require that haplotypes be reallocated to clusters after each successful proposal. First, we define and define∗z p yi i

an matrix , which has elements if and 0 otherwise. We then rewrite equation (5) asI # C X X p 1 c p jij hi

z p Xg � e .

If we assume a prior , then with∗ ∗g ∼ N(m,S) f(gFz) ∼ N(m ,S )

∗ ′ �1 �1 �1 ′m p (X X � S ) (S m � X z)
∗ ′ �1 �1S p (X X � S ) .

Parameter proposals are evaluated by constructing a Metropolis-Hastings ratio made from the following marginal
likelihood.

∗ 1/2 ∗FS F exp (�b )
f(zFm,S,T,H) ∝ .1/2 I/2FSF (2p)

where

∗ ′ ′ �1 ∗ ′ ∗ �1 ∗( )b p z z � m S m � (m ) (S ) m /2.

Here, our prior for is .g g ∼ N(0,I)
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We choose uniformly at random from the following five updates. Each update is consists of a proposal that is
accepted according to a standard Metropolis-Hastings ratio based on equation (6).

1. Update xc

We sample the location of the functional mutation using a nonstandard method. With probability 0.75,xc

we propose a new value of based on a random perturbation of the current value, namely ,new oldx x p x � Dc c c

where D can be tuned during the burn-in phase of the sampler. We have found that the value of can oftenxc

mix poorly, so, with probability 0.25, we select randomly from all available marker locations. In eithernewxc

case, changes the set of similarities of haplotypes to cluster c. The acceptance probability of isnew newx xc c

calculated by reallocating haplotypes to centers by use of the new similarities and then calculating a standard
Metropolis-Hastings ratio. When this method is used, generally moves freely during the early burn-in phasexc

of the sampler and then settles down to a relatively narrow region as the sampler progresses.
2. Cluster Birth Move

A new center is proposed by randomly selecting a haplotype that is not already a center and randomly selecting
an from all possible marker values.xc

3. Cluster Death Move
We randomly select a center haplotype and its associated from the current set of center haplotypes andxc

delete it.
4. Cluster Center Move

One of the existing center haplotypes is randomly selected and is changed to a haplotype that is not already
a center haplotype. The new center configuration, , contains the same number of haplotype centers asnewT

before, but with one center altered.
We alter a center haplotype by selecting a percentage of markers and then replacing each allele at each chosen
marker with an allele randomly selected from all alleles observed in the data set at that marker. The percentage
of markers chosen is a tuning parameter that is modified during the burn-in phase of the sampler. However,
to improve mixing, we construct a center proposal 25% of the time, by randomly choosing a center haplotype
from the entire space of possible haplotypes that are not currently centers, in a manner similar to how the
values of are updated.xc

5. Shuffle Move
The order of the clusters is randomly permuted.
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